Enhanced structural, optical and antibacterial activities of Zn2SnO4 nanorods synthesized by Microwave assisted method

Authors

Abstract:

In this research, Zn2SnO4 nanorods were prepared and structural properties of the nanorods were characterized, developing of wide-range of the optical behavior of Zn2SnO4 nanorods and the antibacterial activity was also investigated using a microwave-assisted method. A zinc stannate (Zn2SnO4) nanorod was synthesized via facile microwave-assisted method using ammonia with cubic spinel structure. The crystallography and optical properties were studied using X-ray diffraction and photoluminescence spectroscopy. The morphology of the nanoparticles was observed using field emission scanning electron microscopy. The antibacterial effect of Zn2SnO4 nanoparticles tested against Gram-positive and Gram-negative pathogenic bacteria was investigated. The Zn2SnO4 nanorods showed the excellent antibacterial activity, the inhibition zone indicates the biocidal action of Zn2SnO4 nanorods. Here, we concluded that these materials were used as a bactericidal agent to prevent and control the spread and persistence of infectious diseases.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Structural, optical and dielectric studies in ZnO nanorods by microwave assisted method

ZnO nanorod was prepared by microwave assisted method. The crystal structure of the nano powders were confirmed by X-Ray diffraction analysis and the mean particle size was estimated by the Scherrer,s formula .The surface morphology of the nano particles were analyzed by   using SEM . The absorption spectrum of the material in the UV-Vis range was recorded .The energy band gap of the...

full text

Structural, optical and dielectric studies in ZnO nanorods by microwave assisted method

ZnO nanorod was prepared by microwave assisted method. The crystal structure of the nano powders were confirmed by X-Ray diffraction analysis and the mean particle size was estimated by the Scherrer,s formula .The surface morphology of the nano particles were analyzed by   using SEM . The absorption spectrum of the material in the UV-Vis range was recorded .The energy band gap of the...

full text

structural, optical and dielectric studies in zno nanorods by microwave assisted method

zno nanorod was prepared by microwave assisted method. the crystal structure of the nano powders were confirmed by x-ray diffraction analysis and the mean particle size was estimated by the scherrer,s formula .the surface morphology of the nano particles were analyzed by   using sem . the absorption spectrum of the material in the uv-vis range was recorded .the energy band gap of the material w...

full text

Structural and Optical Study of SnO Nanoparticles Synthesized Using Microwave–Assisted Hydrothermal Route

SnO nanoparticles were synthesized using microwave–assisted hydrothermal method. It was noticed that at 300 and 600 watt microwave power, SnO formed and remained in the tetragonal phase. At 900 watt, SnO2 started appearing and a mixture of SnO and SnO2 phases coexisted. The particle size varied from ~2 to ~13 nm at 300 to 900 watt radiation power. The UV-V absorption spectra showed the excitoni...

full text

chemical recycling of polycarbonate waste using conventional heating and microwave assisted method

پلی کربنات یکی از پلاستیکهای مهمی است که به صورت گسترده در تولید لوحهای فشرده، قطعات رایانه، مواد ساختمانی و غیره مورد استفاده قرار می گیرد. این پلیمر بصورت عمده از تراکم مونومر بیس فنولa (bpa) و کربنیل کلرید یا دی متیل کربنات ها بدست می آید. در سالهای اخیر بازیافت شیمیایی پلی کربنات بیشتر مورد توجه بوده است. بازیافت شیمیایی پلی کربنات برای بدست آوردن مواد اولیه آن با روشهای متفاوتی مانند تجزی...

structural and optical study of sno nanoparticles synthesized using microwave–assisted hydrothermal route

sno nanoparticles were synthesized using microwave–assisted hydrothermal method. it was noticed that at 300 and 600 watt microwave power, sno formed and remained in the tetragonal phase. at 900 watt, sno2 started appearing and a mixture of sno and sno2 phases coexisted. the particle size varied from ~2 to ~13 nm at 300 to 900 watt radiation power. the uv-v absorption spectra showed the excitoni...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  355- 363

publication date 2020-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023